Preview

Problems of AgriMarket

Advanced search

The cartographic method for solving land-use problems

https://doi.org/10.46666/2025-4.2708-9991.14

Abstract

Pastures occupy significant areas in the country and serve as the basis of the fodder base of agriculture. The study of issues related to cartographic support for the use of pasture lands and state control over pasture resource management using geoinformation technologies (GIS) meets modern requirements for the digitalization of the land cadastre. The purpose is the study and monitoring of pasture lands based on geo-analytical systems and artificial intelligence.

Objectives: to analyze spatial and land-cadastre data of pasture lands and regulatory standards, and to assess the condition of pasture territories using GIS technologies.

Methods — within the framework of the project, orthophotos obtained using specialized software support SAS.Planet, designed for downloading, visualization, and processing of spatial indicators, were applied. The initial information included the collection of data on the boundaries of rural districts, pasture plots, and livestock numbers, followed by their digitization in the GIS environment; monographic and experimental methods were used in processing the research material with the application of modern software tools and computer intelligence programs.

Results — the creation of an electronic database of cartographic services integrating geospatial parameters, automatic calculation of livestock load on pastures, and the formation of a legal act in the form of a protocol of preventive inspection for the elimination of violations.

Conclusions — the developed model for calculating the intensity of grazing impact on land will be implemented in land inspection practice and in planning the use of agricultural land. Visual interpretation of results is accessible to specialists, farmers, and the rural population, enabling the introduction of mathematical-cartographic modeling techniques in cadastral work and the development of integrated natural resource cadastres for regions.

About the Author

V. V. Garkushina
S. Seifullin Kzakh Agro Technical Research University
Kazakhstan

Garkushina Valentina Vasilievna – The main author; Candidate of Economic Sciences, Associate Professor; Associate Professor of the Department of Cadastre.

010011 Pobedy Ave., 62, Astana



References

1. Ovchinnikova, N.G., Primakova, A.S. (2022). Kartograficheskaja sostavljajushhaja v sisteme monitoringa zemel' [Cartographic component in the land monitoring system]. Jekonomika i jekologija territorial'nyh obrazovanij Economics and Ecology of Territorial Formations, 6 (3), 84–92 [in Russian].

2. Garmanov, V.V., Terleev, V.V. (2024). Geograficheskie informacionnye sistemy: GIS Aksioma v zemleustrojstve i kadastre: uchebnoe posobie [Geographic information systems: GIS Axioma in land management and cadastre: textbook]. Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj agrarnyj universitet, 112 [in Russian].

3. Belousov, A.O. (2024). Razrabotka integral'noj ocenki racional'nogo ispol'zovanija zemel' sel'skohozjajstvennogo naznachenija s primeneniem GIS tehnologij [Development of an integrated assessment of the rational use of agricultural lands using GIS technologies]. Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj agrarnyj universitet, 162 [in Russian].

4. Mutalipova, K.K. (2023). Pastbishhnye ugod'ja Kazahstana: racional'noe ispol'zovanie [Pasture lands of Kazakhstan: rational use]. Problemy agrorynka Problems of AgriMarket, 3, 220-227. https://doi.org/10.46666/2023-3.2708-9991.22 [in Russian].

5. Elemesov, S.U. (2020). Monitoring pastbishhnyh resursov Kazahstana: sostojanie i perspektivy [Monitoring of pasture resources of Kazakhstan: state and prospects]. Zemleustrojstvo, kadastr i monitoring zemel' Land Management, Cadastre and Land Monitoring, 70, 20–26 [in Russian].

6. Sutton, A., Fisher, A.G., Eldridge, D.J., Metternicht, G. (2025). Multi-temporal remote sensing of ground cover reveals beneficial effects of soil carbon farming in a semi-arid landscape. Computers and Electronics in Agriculture, 234, 110278. https://doi.org/10.1016/j.compag.2025.110278 [in English].

7. Justino, S.T.P., Paganini, E.A.L., Silva, R.B., Silva, R.P.S., Zabotto, A.R., Roder, L.R. (2025). Spatial-temporal analysis of vegetation cover and soil degradation from Landsat time-series – A case study in the Caatinga, Brazil. Journal of South American Earth Sciences, 160, 105528. https://doi.org/10.1016/j.jsames.2025.105528 [in English].

8. Bayma, G., Nogueira, S.F., Adami, M., Sano, E.E., Nuñez, D.C., Santos, P.M., Pezzopane, J.R.M., Grego, C.R., Teixeira, A.H.C., Skakun, S. (2025). Estimating forage mass in Brazilian pasture-based livestock production systems through satellite and climate data integration. Computers and Electronics in Agriculture, 237, 10496. https://doi.org/10.1016/j.compag.2025.110496 [in English].

9. Zhao, Y., Song, W., Wu, Z., Bai, Y. (2025). Spatial and temporal analysis of reasonable livestock carrying capacity and ecological carrying capacity of grasslands in pastoral areas of China. Chinese Science Bulletin, 70 (11), 1641–1656 [in English].

10. Marchegiani, S., Gislon, G., Marino, R., Caroprese, M., Albenzio, M., Pinchak, W.E., Carstens, G.E., Ledda, L., Trombetta, M.F., Sandrucci, A., Pasquini, M., Deligios, P.A., Ceccobelli, S. (2025). Smart technologies for sustainable pasture-based ruminant systems: A review. Smart Agricultural Technology, 10, 789. https://doi.org/10.1016/j.atech.2025.100789 [in English].

11. Kuppala, N., Krishna, C.N., Variyar, V.V.S., Sivanpillai, R. (2024). Mapping Vegetation Dynamics in Wyoming: A Multi-Temporal Analysis using Landsat NDVI and Clustering. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-5, 87–94. https://doi.org/10.5194/isprs-archives-XLVIII-M-5-2024-87-2025 [in English].

12. Rane, N.L., Gidutur, M., Choudhary, S.P., Pande, C.B. (2023). Remote Sensing (RS) and Geographical Information System (GIS) as A Powerful Tool for Agriculture Applications: Efficiency and Capability in Agricultural Crop Management Efficiency and Capability of RS and GIS in Agricultural Crop Production Management. International Journal of Innovative Science and Research Technology, 8 (4), 264-274. https://doi.org/10.5281/zenodo.7845187 [in English].

13. Liu, M., Wang, Z., Shao, Q. (2021). Long-Term Dynamics of Vegetation NDVI and Its Response to Climate Change in Mongolia. Ecological Indicators, 122, 107285 [in English].

14. Badmaeva, M.H. (2023). K voprosu ob osobennostjah i problemah primenenija sistem iskusstvennogo intellekta v sel'skom hozjajstve [On the issue of features and problems of using artificial intelligence systems in agriculture]. Vestnik Burjatskogo gosudarstvennogo universiteta Bulletin of the Buryat State University, 3, 75-81 [in Russian].

15. Zolkin, A.L. (2025). Razrabotka i razvertyvanie sredstv sbora i dispetcherizacii informacii v agrokombinatah: uchebnoe posobie dlja vuzov [Development and deployment of information collection and dispatching tools in agricultural complexes: a textbook for universities]. Sankt-Peterburg: Lan', 140 [in Russian].


Supplementary files

Review

For citations:


Garkushina V.V. The cartographic method for solving land-use problems. Problems of AgriMarket. 2025;(4):158-166. (In Russ.) https://doi.org/10.46666/2025-4.2708-9991.14

Views: 33

JATS XML

ISSN 1817-728X (Print)
ISSN 2708-9991 (Online)